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ABSTRACT 
Traffic signal timing plans are typically developed on the basis of turning movement traffic and 
pedestrian volume counts aggregated to 15-minute intervals and obtained over a 4 or 8 hour period 
on a single day.  These data are used to compute the peak hour factor (PHF) and the peak hour 
turning movement traffic volumes which are then typically used as input to the analysis methods 
defined in the Highway Capacity Manual or within popular signal timing optimization software.  

However, all of these methods are deterministic in that they ignore the day-to-day variability that 
exists within key input parameters such as the PHF and peak hour traffic volume. The lack of 
consideration of this variability may be because (a) it is assumed that the impact of the variability is 
small; and/or (b) methods have not been developed by which the variability can be considered. 

This paper presents findings of a study that quantify the impact of day-to-day variability of 
intersection peak hour approach volumes and demonstrate that this impact is not insignificant and 
therefore should not be ignored.  

Finally, the study examined the number of days for which approach volumes should be counted in 
order to establish intersection delay within a desired level of confidence.  The results indicate that for 
intersections operating near capacity a minimum of 3 days of peak hour volume observations are 
required to estimate the average intersection delay with an estimation error of 40% of the true mean.  

 

KEYWORDS: traffic signals, variability, intersection delay, peak hour volume, PHF. 
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1.0 INTRODUCTION 
In North America, the Highway Capacity Manual (HCM 2000) is the most widely adopted method 
for analysis of signalized intersections.  The HCM defines signalized intersection performance in 
terms of average vehicle delay (seconds per vehicle) and then maps this delay against predefined 
boundaries to define intersection performance in terms of six levels of service (i.e. LOS A through 
LOS F).  

Intersection performance (i.e. delay) is a function of many factors including, signal timing plan, 
turning movement traffic demands, traffic stream composition, pedestrian volumes, intersection 
geometry, temporal variation in traffic demands, the headway distribution of each traffic stream, 
driver characteristics, weather and road surface conditions and visibility. Some of these factors are 
invariant for a given intersection operating under a defined signal control strategy (e.g. geometry and 
signal timing plan) while others vary (e.g. weather, traffic demands, etc.).  

Some of this variability is captured (or controlled for) by the intersection analysis methodology. For 
example, traffic demands vary by time of day, but this is controlled for by applying the analysis 
method for the peak hour volume and utilizing the peak hour factor (PHF).  Weather conditions are 
controlled for by assuming ideal weather conditions. The random variability of vehicle arrivals (i.e. 
headway distribution of the approach traffic steams) are assumed to be Poisson and then the 
influence of nearby upstream signalized intersections in terms of creating platoons is considered.  

However, variability of other factors is not considered including the day-to-day variability in the 
traffic volumes, PHF, and saturation flow rate. This raises a number of issues about appropriate 
criteria for intersection control evaluation and design including:  

1. Traffic engineers typically design signal timing plans to achieve a prescribed level of service 
(say LOS C).  This is interpreted to mean that the timing is designed to provide, on average, 
LOS C. Signal designs are determined on the basis of turning movement volumes that are 
assumed to reflect average peak hour demands. But, does selecting a signal timing plan to 
provide LOS C on the basis of average turning movement volumes, provide an average 
intersection performance of LOS C? 

2. What is the distribution of the performance provided by the signalized intersection? For 
example, how frequently will the intersection experience LOS A, B, C, D, E or F during the 
weekday peak hour?  

3. In practice, traffic engineers typically collect turning movement volume count data in 15 
minute intervals over a peak period.  On the basis of these data, the peak hour is identified, 
the peak hour volumes are extracted, and the peak hour factor is computed.  If the peak hour 
of each weekday is considered as a single outcome (or observation) then signal analysis and 
design is generally conducted on the basis of turning movement counts that represent a single 
observation from a distribution. If a desired level of accuracy is desired in terms of estimating 
the average intersection delay, over how many days should turning movement counts be 
obtained?  

This paper seeks to address the following specific questions that begin to address these issues: 

1. What degree of day to day variability exists in the peak hour traffic volume and to what 
extent are traffic volumes on different intersection approaches statistically correlated? 

2. What degree of day to day variability exists in the peak hour factor? 
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3. What impact does the day to day variation in the peak hour volume have on intersection 
performance? 

4. How many day’s of turning movement counts are required to estimate intersection 
performance with a given level of confidence? 

In this paper we answer these questions using empirical data to quantify the distribution of day-to-
day peak hour traffic volumes and the degree of statistical correlation between approach volumes. 
Then these data are used as input to a Monte Carlo simulation to determine the associated 
distribution of intersection delay. 

The next section provides the background of the HCM delay estimation expressions, previous work 
examining the sensitivity of intersection performance to variability of key input parameters, and the 
study methodology.  

Section 3 provides a description of the data used in the study and the characterization of the empirical 
distributions. 

Section 4 provides the results of the Monte Carlo simulation and Section 5 provides conclusions and 
recommendations. 

2.0 ANALYSIS METHODOLOGY 

2.1 BACKGROUND 
Signalized intersections typically form the capacity bottlenecks in urban road networks. Signal 
timing plans are developed in order to segregate potentially conflicting movements at a signalized 
intersection. Methods to analyze the performance of a given signal timing plan, and to develop 
optimal plans, have been developed since the 1950s and are now embedded in design manuals such 
as the Highway Capacity Manual (HCM) and Canadian Capacity guide (CCG).  

The methods in the HCM and CCG are based on the work of Webster (1958) who first developed a 
relationship between signal timings, and traffic characteristics and intersection performance (i.e. 
delay). Webster’s original expression for delay is given as  
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There are three components in Webster's expression. The first component is the average delay 
assuming deterministic arrivals and deterministic service rate. The second component accounts for 
the delay due to the randomness of arrivals and was developed on the basis of steady-state stochastic 
queuing theory assuming Poisson arrivals and deterministic service. The last component is an 
empirical correction factor that ranges from 5 to 15% of d’.  

Webster’s original formulation is valid only for X < 1.0. To permit application to oversaturated 
conditions researchers employed the coordinate transformation technique to develop expressions for 
delay that are applicable even for X > 1.0. 

One such delay expression, incorporated within the HCM, is given by 
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where: 
  = lane group capacity (veh/h), c
  = cycle length (seconds), C
  = control delay per vehicle (seconds/veh), d
  = uniform control delay assuming uniform arrivals (seconds/veh), 1d
  = incremental delay to account for randomness (seconds/veh), 2d
  = initial queue delay (seconds/veh), 3d
  = supplemental adjustment factor for platoon arriving during green, PAf
 g = duration of green interval (seconds), 

Cg /  = proportion of green time available, 
  = incremental delay based on controller settings, k
  = upstream filtering / metering adjustment factor, and  l
  = progression adjustment factor PF
  = proportion of vehicles arriving on green P
  = analysis period (hour), T
 X  = lane group cv /  ratio or degree of saturation. 
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The delay expressions in the CCG have a similar basis and are given by 
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 where: 
   = capacity = , c )/( CgS
  = cycle length (seconds), C
  = uniform delay D/D/1 queue, and 1d
  = overload delay 2d
  = duration of effective green interval (seconds), g
  = progression factor, fk
  = saturation flow rate (vph), S
  = evaluation time in minutes, et
 X  = degree of saturation = C/λ , 
  = minimum of (1X X , 1.0). 

 

For both the HCM and the CCG expressions, delay is primarily a function of volume and capacity.  
Volume is typically the hourly flow rate associated with the peak 15-minutes (i.e. volume = peak 
hour volume/PHF).  Capacity is a function of the signal timing and the saturation flow rate. 

However, in both methods no consideration is given to the distributions of these inputs and only 
single point estimates are used. 

2.2 PREVIOUS RESEARCH  
Very little research appears to have been conducted specifically investigating day-to-day variability 
of the inputs to signal delay analysis. One recent relevant study conducted by Sullivan et al., (2006) 
examined the impact of day to day variations in urban traffic peak hour volumes on intersection 
service levels. Using weekday data from 22 directional continuous traffic counting stations in the city 
of Milwaukee, the authors computed the coefficient of variation (COV) of peak hour traffic volume. 
They found that the COV ranged from 0.048 to 0.155 with a mean of 0.089. 

Using this COV in peak hour volumes, they examined the impact on a hypothetical intersection 
approach controlled by a fixed time signal with a 90 second cycle length and an assumed saturation 
flow rate of 1,900 vph. The approach delay was estimated using the HCM method for mean peak 
hour volumes, the 85th percentile volume (i.e. mean plus one standard deviation) and the 97.5 
percentile volume (i.e. mean plus two standard deviations).  
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The authors found that the use of average volume to capacity ratio tends to understate level of service 
at busy intersections and concluded that for intersections operating at LOS D, a 10 % increase in 
traffic volumes would cause deterioration to LOS E or LOS F, about 15% of the time.  

The authors also concluded that “it is desirable to base intersection service level computations on 
several days’ peak hour volumes”. However they did not make any recommendations regarding how 
many days or how this could be computed.  

The impact of PHF on estimated intersection performance and the selection of appropriate values of 
PHF was examined by Tarko et al., (2005) who proposed a prediction model based on time of day, 
population, rush hour volume and road class. 

 )258.0209.0435.023.2exp(1 VOLPOPAMPHF −++−−=   (9) 

 where: 
 PHF =  peak hour factor, 
 AM  =  1; if morning AM; 0 other wise, 
  = rush hour volume (in thousands/hour), VOL
POP  = population. 

 

The results obtained using the equation were compared with field results and a standard error of 
0.072 was calculated. Tarko’s model can be used by traffic engineers to estimate values of PHF for a 
given intersection. However, Tarko’s model does not provide any insights to the degree of day to day 
variation that exists in the PHF at a given intersection.  

 

3.0 EMPIRICAL VARIABILITY 

3.1 DATA SET 
Waterloo and Kitchener are adjacent cities located in south western Ontario, Canada approximately 
120 km west of Toronto.  The combined population of these two cities is 300,000.  The regional 
government, which is responsible for traffic signal operations within these two cites, operates 16 
continuous volume counting loop detector stations located mid-block on major arterial roadways.  
Vehicle counts are obtained for each lane in both directions and aggregated at 15-minute intervals. 
Data from these vehicle count stations were obtained for the 2005 calendar year.  

It is assumed that the volume counts from these stations can be interpreted as the approach volumes 
at the signalized intersections immediately downstream of the detector stations.  This assumption 
implies that: 

1. Any oversaturated conditions that may occur at the downstream signalized intersections do 
not cause queues to spill over the vehicle count stations for any significant portion of the 15 
minute interval.  

2. There are no significant mid-block flows (entering or leaving) between the vehicle count 
station and the downstream signalized intersection.  

The individual lane data were aggregated to provide vehicle counts by direction (resulting in 26 
directional volume count stations) and were filtered to remove data associated with weekends (i.e. 
Saturdays and Sunday) and all local and national holidays.  This resulted in a maximum of 20,736 
fifteen minute volume observations for each volume count station. However, as a result of hardware 
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and communication failures, some stations provided only a portion of these data. Stations with less 
than 70% data availability (i.e. fewer than 14,515 fifteen minute volume counts) were eliminated 
from the analysis. The remaining 13 stations exhibited an average annual traffic volume ranging from 
a low of 8,000 vehicles to 30,000 vehicles per non-holiday week day. 

Typically, traffic engineers consider the PM peak period to be the highest demand period of the day 
and therefore, only data from 3:45 PM to 6:30 PM were considered for further analysis. 

For each of the 13 stations, for each day, the volume count data were examined to determine: 

1. Time of the start of the peak hour; 

2. PM peak hour volume; and 

3. Peak hour factor. 

As a second quality check, the day-to-day variation in peak hour volume was examined for each of 
the 13 stations. Three stations exhibited erratic variation indicative of abnormal influences, such as 
lane closures due to construction during a portion of the year long data collection period. These 
stations were removed from the data set to avoid biasing the analysis.  

3.2 VARIATION IN PEAK-HOUR VOLUME 
Table 1 provides descriptive statistics for the peak hour volumes determined for the remaining 10 
volume count stations. The mean peak hour volume varies significantly from one station to the next 
(i.e. ranging from 594 vph to 1375 vph), however, this variation is attributable to different traffic 
patterns on different roads, and is not of interest with respect to random day-to-day variations.  

What is of interest, however, is the day-to-day variation in the peak hour volume that occurs at each 
site. This variation can be quantified by the coefficient of variation (COV) which is computed as the 
ratio of the standard deviation over the mean. The COV varies from a minimum of 5.4% to a 
maximum of 13.1% and on average is equal to 8.7%.   

Sullivan et al., conducted a similar analysis using data from the City of Milwaukee and found that 
COV varied between approximately 5% and 16%.  They suggested that COV decreases with 
increasing mean volume but they did fit a statistical model to confirm this.  Figure 1 presents the 
COV of peak hour volume as a function of peak hour volume from both the Waterloo data and the 
City of Milwaukee data from Sullivan et al. (2006).  

The Waterloo data and the City of Milwaukee data appear to be quite similar (means and variances of 
COV are the same at the 95% confidence level as determined using the t-test and F-test, 
respectively), though the Milwaukee data extends to cover a larger range of peak hour volumes.  As 
suggested by Sullivan, the data appear to exhibit a weak trend of decreasing COV with increasing 
peak hour volume.  

Least squares linear regression was used to fit a linear model to the combined Waterloo and 
Milwaukee data resulting in. 

 COV = 0.129 – 0.036V  (10) 

Where: 
 COV = coefficient of variation of the peak hour approach volume 
 V = mean peak hour approach volume (in thousands of vph) 
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Though the regression intercept and coefficient are statistically significant at the 95% level, the 
regression explains only a small portion of the variance within the data (adjusted R2 = 0.15) and 
therefore must be viewed with scepticism. It is possible that other non-linear model forms may 
marginally improve the model fit; however, it is clear from Figure 1 that no model that relies solely 
on mean peak hour direction volume will be able to explain a significant portion of the variance in 
the data.  Given the relatively low explanatory power of the regression model and the weak 
association of COV with mean peak hour volume, a constant COV of 0.087 is used for the remainder 
of the analysis in this paper.  

The COV can be used to characterise the variability within the approach volume distribution, 
however we also are interested to determine the shape of the distribution. This was accomplished by 
normalizing each peak hour volume observation by dividing it by the mean peak hour volume for 
that volume count station. Consequently, it was possible to create distributions of normalized peak 
hour volumes and to compare these distributions for each of the 10 volume count stations (Figure 2). 

The Kolmogorov-Smirnov test was used to determine if each distribution could be adequately 
described by the Normal, Gamma, and Log-Normal distribution at the 99% level of confidence.  It 
was found that the 10 distributions of day-to-day normalized peak hour volume are best described by 
the Normal distribution with a mean of 1.0 and a standard deviation of 0.087.   

3.3 CORRELATION OF PEAK HOUR VOLUMES 
In the previous section, it was determined that the day-to-day variation in weekday peak hour 
volumes can be modelled by a normal distribution with a coefficient of variation of 0.087.  However, 
there remains the question of whether or not the peak hour traffic demands on each intersection 
approach are statistically correlated.  The volume count data represented mid-block flows from 
various locations throughout Waterloo region.  Consequently, it was not possible to directly 
determine the correlation between traffic volumes on different approaches to the same intersection. 
Nevertheless, it was possible to test the extent to which peak hour traffic volumes at different mid-
block locations are correlated.  A high correlation could be interpreted to mean that when peak hour 
traffic demands are higher than average they tend to be higher than average at all locations including 
all approaches to an intersection.  

The correlation coefficient ρ was computed between the peak hour volumes for each pair of stations 
(Table 2). The value of ρ ranged from 0.003 to 0.55 with an average of 0.3 indicating that in general 
the level of correlation is relatively weak. This suggests that when peak hour traffic volumes on one 
approach are much lower (or higher) than average there is not a high likelihood that peak hour 
volumes on the other approaches are also lower (or higher) than average.   

Further work is required to confirm that a similar range of correlation exists between peak hour 
volumes on different approaches to the same intersection.  Nevertheless, the importance of the 
statistical correlation between approach volumes is demonstrated in Section 4 of this paper.  

3.4 VARIATION IN PEAK-HOUR FACTOR 
Another important input to the HCM signalized intersection analysis methodology is the peak hour 
factor (PHF) which reflects the temporal variation of 15-minute aggregate volume within the peak 
hour.  

The average PHF was found to vary from 0.88 to 0.94 with a mean of 0.923 and the COV varied 
from 0.027 to 0.051 (Table 3). The average COV across the 10 stations was 0.039.  These results 
imply that the relative day-to-day variation in the PHF is not as large as the relative day-to-day 
variation in the peak hour volume. 
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The distribution of normalized PHF for each of the 10 stations was tested using the Kolmogorov-
Smirnov test with the result that 7 out of the 10 distributions were found to be adequately described 
by the Normal distribution.   

We also compared the observed mean PHF from each station to those estimated by the regression 
model proposed by Tarko (2005).  The results of this comparison are provided in Figure 3.  The peak 
hour factor values computed from the empirical data are consistently smaller than those predicted by 
Tarko’s expression.  A t-test was used to compare the mean PHF values with the conclusion that the 
mean PHF values provided by Tarko’s expression and calculated from the Waterloo data are 
statistically different at the 95% level of confidence.  

This result suggests that Tarko’s expression is not suitable for application to the Waterloo data.  
However, the reasons for this are not known. 

3.5 VARIATION IN TIME OF PM PEAK HOUR 
We also examined the variation in the time at which the PM peak hour volume occurred. Consider 
Figure 4 which illustrates the distribution of the start time of the PM peak hour for one of the vehicle 
count stations.  The results in Figure 4 suggest that for approximately 40% of the non-holiday 
weekdays for which data were obtained, the peak hour volume is observed between 4:30 and 5:30 
PM and for 35% of the data, the peak hour volume is observed between 4:45 and 5:45 PM.  On 
average over all 10 stations, the peak hour volume occurs between 4:30 and 5:30 PM with a standard 
deviation of approximately 20 minutes.  

From a signalized intersection analysis and design perspective the time of the peak hour is likely not 
of high importance.  Whether the peak hour begins at 4:30 PM or at 5 PM on a particular day is less 
important than the performance of the intersection during the peak hour.  However, these results do 
suggest that when the collection of field data reflecting peak volume conditions is necessary, the time 
of occurrence of the peak hour cannot be assumed to be fixed.  

4.0 VARIABILITY OF INTERSECTION DELAY AND LOS 
The objective of this section is to explore the impact that the day-to-day variability of peak hour 
volumes has on the operating characteristics of a typical 4-leg intersection operating under a fixed 
time traffic signal control strategy. The following section describes the hypothetical intersection.  
Section 4.2 describes the Monte Carlo simulation used to evaluate the intersection performance.  The 
results of the simulation are presented in section 4.3. 

4.1 HYPOTHETICAL INTERSECTION 
A hypothetical 4-leg intersection was assumed. Each approach consisted of an exclusive left turn 
lane, an exclusive through lane, and a shared through and right turn lane.  All lane widths, grade, 
curb radii, etc. were considered to be ideal with no on-street parking, no transit vehicles, and 
adequate storage and discharge space. The base saturation flow rate was assumed to be 1900 pcphpl.  
The intersection was controlled by a two-phase signal timing plan with a cycle length of 80s; 38s 
effective green for phase 1; 34s effective green for phase 2; and 4 seconds of intergreen between each 
phase.  Right-turn on red was not permitted. 

Six traffic demand scenarios were considered.  For each scenario, the turning movement proportions 
remained constant (1% left turn, 79% through, and 20% right turn) but the total approach demands 
varied (Table 4). For each scenario, traffic volumes were selected so that the intersection delay 
associated with the mean volumes fell within the specified LOS range. For all cases, the traffic 
stream was assumed to consist of only passenger cars.  
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4.2 MONTE CARLO SIMULATION 
The performance of the hypothetical intersection was evaluated using the methodology defined by 
the HCM.  The following parameter values were assumed: 

• Evaluation time period = 0.25 hours 
• PHF = 0.923 
• Area type = 1 (CBD) 
• Arrival type = 4  

 
For each of the 6 demand scenarios, 1000 Monte Carlo trials were evaluated.  For each Monte Carlo 
trial, peak hour approach volumes were generated randomly using a Normal distribution with a COV 
= 0.087 and the mean peak hour volume from Table 4.  This was repeated 4 times, each for a 
different level of correlation between the approach volumes, namely Uncorrelated (ρ = 0); Perfectly 
Correlated (ρ =1.0); Average Correlation (ρ = 0.3); and High Level of Correlation (ρ = 0.55).  

For all simulations, the signal timing plan, saturation flow rate, PHF, and turning proportions and all 
other inputs except the approach volumes remained unchanged. 

4.3 RESULTS 
Figure 5 illustrates the cumulative distribution of average intersection delay associated with traffic 
demand scenarios LOS B, LOS C, and LOS E for the four different levels of correlation. Several 
observations can be made on the basis of these results. 

First, as expected, the variation in the intersection performance (i.e. delay) increases dramatically as 
the design LOS changes from B to E.   

Second, the variation in intersection delay increases with increasing correlation of the approach 
volumes.  This impact is increasingly pronounced as the intersection design quality of service 
decreases (i.e. moves to LOS E).  

Third, the distribution of intersection delay appears to be generally Normally distributed.  This was 
confirmed by the Kolmogorov-Smirnov which showed that 22 of the 24 cases (i.e. six LOS scenarios 
each at four levels of correlation) could be best described by a Normal distribution. The remaining 
two cases (LOS E with ρ = 0 and LOS E with ρ = 0.55) were best described by the Log-Normal 
distribution.  

Figure 6 illustrates the impact that the non-linear relationship between volume and delay has on 
estimating the mean delay.  The x-axis in Figure 6 represents the delay that is obtained when the 
mean volumes are used to compute delay. The y-axis represents the ratio of the mean delay (as 
obtained from the mean of the distributions illustrated in Figure 5) and the delay associated with the 
mean volumes.  When these estimates are equal, the ratio is equal to 1.0.  For all the LOS scenarios 
examined, the ratio is greater than 1.0, indicating that computing the intersection delay on the basis 
of the average volumes, and ignoring the variability of these volumes, under-estimates the true 
average intersection delay by as much as 15%.   

In Figure 6, LOS C/D demand scenario (having an average intersection degree of saturation of 0.985) 
exhibits the largest estimation error. However, this can not be interpreted to mean that intersections 
operating at LOS C/D necessarily exhibit the largest estimation error.  Intersection delay, and 
therefore LOS, is a function of both degree of saturation (X) and g/C ratio (Equations 4 and 5; 7 and 
8). Consequently, for the same value of X it is possible to experience different levels of service 
depending on the g/C ratio.  
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The results in Figure 6 can be explained using Figure 7 which depicts the typical relationship of 
intersection delay as a function of degree of saturation (i.e. volume to capacity ratio).  If we assume 
the capacity of the intersection is fixed (i.e. signal timings are not changed) then the x-axis can be 
thought of as volume.  

Distribution A represents the day-to-day distribution of volume for a relatively low value of X.  
Distribution a represents the corresponding delay distribution.  The mean of distribution a is very 
similar to the delay obtained for the mean of distribution A because the relationship between delay 
and X is nearly linear over the range of distribution A.  Consequently, observations over thie range 
correspond to a ratio close to 1.0 in Figure 6.  

Distribution B represents the day-to-day distribution of volume for X approximately equal to 1.  
Distribution b represents the corresponding delay distribution.  The mean of distribution b is clearly 
larger than the delay obtained for the mean of distribution B. This result is obtained because the 
increase in delay for volumes greater than the mean is much larger than the decrease in delay 
associated with volumes smaller than the mean (i.e. rate of change in curvature of the delay equation 
2 or 6 is maximum at X = 1).  

Distribution C represents the day-to-day distribution of volume for conditions of X > 1.  Distribution 
c represents the corresponding delay distribution.  The mean of distribution c is very similar to the 
delay obtained for the mean of distribution C because the relationship between delay and volume is 
again nearly linear. 

Therefore, in general the largest estimation error occurs for conditions in which the intersection 
degree of saturation is near to 1.  

The preceding discussion has focussed on the estimating the distribution of intersection delay given 
that the true mean peak hour volume or the distribution of peak hour approach volumes is known.  Of 
course in practice, the true mean and the distribution of peak hour volume is rarely known.  In 
current practice, a single observation is obtained and used to determine the signal design. Given the 
variability in the intersection performance, a single observation is rarely adequate. The obvious 
question then is how many days of observations are required.   

Figure 8 illustrates the number of days of observations of peak hour volumes that are required to 
determine the average intersection delay within a given tolerance level (results are provided for ρ = 
0.3).  The data in Figure 8 were generated using a two stage sampling process where by an initial 
sample of 3 days of observations of peak hour volume were randomly selected from 1000 days.  For 
each day’s observation, the intersection delay was computed using the standard HCM method.  The 
mean and sample standard deviation of intersection delay associated with the three observations was 
computed. Then the number of observations required to achieve a given level of accuracy in the 
estimate of the mean delay was computed as 
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Where: 
 n2 = required number of days of observations of peak hour volume 
  = student t distribution value for n2-1 degrees of freedom and a probability of α α,12−nt
 s = sample standard deviation of intersection delay computed from the initial sample 
 d = maximum desired error in the estimation of the true mean intersection delay 
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Values of d between 2 seconds and 60 seconds were examined. The two stage sampling process was 
conducted 500 times for each level of d considered and the average value of n2 reported.  In Figure 8, 
d is represented as a fraction of the true average intersection delay (y-axis). 

The results in Figure 8 can be used to determine the number of days of observations required to 
achieve a selected maximum estimation error.  For example, if a maximum estimation error of 40% 
of the true mean intersection delay is acceptable, then the number of days of peak hour volumes 
required is estimated to be 1, 2, 3, 3, 3, and 3, for the intersection operating at LOS B, B/C, C, C/D, 
D, and E respectively.  The associated expected error in the estimated average intersection delay is 5, 
10, 12, 19, 21, and 29 seconds respectively.  Obviously, if a more accurate estimate of the mean 
intersection delay is required (e.g. 20% error), then more observations of peak hour volumes must 
also be made. The choice of the acceptable level of error represents a trade-off between accuracy or 
reliability of the estimated intersection performance and the cost of acquiring turning movement 
counts. Current practice typically is to conduct volume counts on a single day, implying reliability of 
the estimated intersection performance may be very poor.  Given that decisions associated with 
intersection improvements (and possibly developer fees) may be made on these intersection 
performance estimates, greater reliability of the estimates may be necessary.  

5.0 CONCLUSIONS AND RECOMMENDATIONS 
The day-to-day variability of peak hour approach volumes are not considered within signal 
evaluation and design methodologies.  Rather, the current practice is to determine intersection 
performance, in terms of average vehicle delay, on the basis of peak hour volumes observed over a 
single day. 

In this study, we have determined on the basis of empirical data that: 

1. The day-to-day variation of weekday peak hour volumes can be represented by a Normal 
distribution with a coefficient of variation of 0.087.  These finding are consistent with the 
finding of Sullivan et al (2006). 

2. The coefficient of variation of peak hour volumes is linearly related with the mean peak hour 
volume however, this relationship is very weak (adjusted R2 = 0.15). 

3. The variation of peak hour approach volumes are not statistically independent but appear to 
exhibit a moderate correlation (mean ρ = 0.3).  

4. Correlation between the peak hour volumes on each intersection approach impacts the 
variability of intersection delay.  The higher the degree of correlation, the greater the 
variability in the intersection delay. 

5. The day-to-day variation in the weekday PHF can be represented by a Normal distribution 
with a mean coefficient of variation of 0.039.  The impact of variability of PHF on 
intersection delay was not examined. 

6. The values of PHF were compared to those estimated via the regression model proposed by 
Tarko (2005).  Tarko’s model was found to over estimate the PHF. 

7. The estimation of average intersection delay on the basis of average peak hour volumes 
under-estimated the true delay by as much as 15%.  Furthermore, the greatest 
underestimation error occurs for intersections operating in the range of X ≈ 1.  Depending on 
the g/C ratio, this can be associated with an intersection LOS D or even C.  
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8. The number of days of observations of peak hour volumes required to estimate intersection 
performance was established as a function of the desired level of accuracy.   

On the basis of these observations and conclusions, it is recommended that: 

1. Additional field data be obtained from another location to confirm the findings of this study. 

2. The impact of day-to-day variability of the PHF and turning movement proportions on 
intersection performance be examined. 

3. Criteria be established to incorporate the day-to-day variability of these parameters within 
existing signalized intersection evaluation and analysis methodologies. 
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Table 1: Peak hour volume descriptive statistics 
 Volume Count Detector Station (Peak Hour Directional Volume in vph) 
 62 (1-way) 182-WB 184-WB 184-EB 290-WB 312-NB 313-NB 313-SB 484-NB 484-SB Average 

Mean 1287 1375 658 594 1282 971 822 855 720 961 952 
Std 69.6 97.6 61.5 54.9 111.5 62.6 52.7 112.3 69.4 106.6 79.9 

COV 0.054 0.071 0.094 0.093 0.087 0.065 0.064 0.131 0.096 0.111 0.087 
Obs. 209 213 213 213 213 214 214 214 204 171 208 
Max 1448 1671 1047 788 1750 1160 987 1033 1134 1193 1750 
Min 1042 811 454 277 996 746 640 564 558 490 277 

 



Hellinga and Abdy  17 

Table 2: Correlation Matrix for approach volumes 

Station  62 (1-way) 182-WB 184-WB 184-EB 290-WB 312-NB 313-NB 313-SB 484-NB 484-SB 

62 (1-way) 1                   
182-WB 0.3712 1                 
184-WB 0.4071 0.0501 1               
184-EB 0.3899 0.0892 0.4745 1             
290-WB 0.3799 0.2233 0.3058 0.0043 1           
312-NB 0.5545 0.3457 0.3824 0.3201 0.4413 1         
313-NB 0.4348 0.3018 0.3603 0.5205 0.0199 0.3882 1       
313-SB 0.3512 0.5350 0.3574 0.3739 0.3103 0.4513 0.5329 1     
484-NB 0.4395 0.1150 0.2560 0.2141 0.3240 0.3232 0.2112 0.1224 1   
484-SB 0.3315 0.2362 0.1446 0.2479 0.0032 0.1732 0.3968 0.0670 0.0941 1 
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Table 3: Peak Hour Factor descriptive statistics 
 Peak Hour Factor (PHF) 
 62 (1-way) 182-WB 184-WB 184-EB 290-WB 312-NB 313-NB 313-SB 484-NB 484-SB Average 

Mean 0.94 0.94 0.92 0.88 0.94 0.94 0.92 0.92 0.91 0.93 0.923 
Std 0.025 0.026 0.041 0.045 0.030 0.042 0.037 0.034 0.042 0.033 0.036 

COV 0.027 0.028 0.045 0.051 0.032 0.045 0.040 0.036 0.047 0.036 0.039 
Obs. 209 213 213 213 213 214 214 214 204 171 208 
Max 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 
Min 0.87 0.86 0.75 0.77 0.85 0.47 0.80 0.83 0.75 0.81 0.47 
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Table 4: Evaluation scenarios 

 
Intersection 
Performance 

Average Approach Peak Hour Traffic Demand (pcph) 

Scenario 
Delay1 
(s/veh) 

Degree of  
Saturation (X) EB WB NB SB 

LOS B 15.6 0.601 956 950 852 861 
LOS B/C 24.3 0.877 1390 1381 1239 1252 
LOS C 27.6 0.914 1448 1439 1291 1304 
LOS C/D 40.1 0.985 1564 1554 1394 1408 
LOS D 44.7 1.003 1593 1583 1420 1434 
LOS E 65.4 1.067 1694 1684 1510 1526 
1 Delay computing using HCM method and average approach peak hour demands 
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Figure 1: Coefficient of variation of peak hour volume as a function of peak hour volume 
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Figure 2: Distributions of normalized peak hour volume 
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Figure 3: Comparison of empirical data from Waterloo and estimates from Tarko’s equation 
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Figure 4: Typical distribution of the start time of the PM peak hour 
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(a) Traffic demand scenario LOS B 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160

Average Intersection Delay (seconds)

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

) 

Perfectly Correlated (ρ = 1.0)

Uncorrelated (ρ = 0)

Average Correlation (ρ = 0.3)

High Level of Correlation (ρ = 0.55)

LOS A LOS B LOS C LOS D LOS E LOS F

 
(b) Traffic demand scenario LOS C 
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(c) Traffic demand scenario LOS E 

Figure 5: Distribution of intersection delay for various traffic demands 
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Figure 6: Comparison of intersection delay estimated using mean approach volumes and 

estimated considering the variation of peak hour volume 
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Figure 7:  Effect of non-linear delay relationship on estimates of mean delay. 
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Figure 8: Number of days of peak hour volume observations required to achieve specified 

accuracy of average intersection delay  
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